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I. INTRODUCTION. In the theory of functions of one complex variable it is

well-known that a function f in the Hardy class H can be factored in the

form

f = gh (1.1)

2as the product of two functions g and h in H The following question

generalizing this fact to functions of two complex variables is raised in

Helson and Lowdenslager [2, p. 178]: Let R be a set o6 tattice points o6 the

pfane not containing the origin, which is closed under addition. Can every

summab.e function f with Fourier sexiez of the form

f a 00 + kn)e - i ( m  + na) (1.2)

be- factored as in (1.1), with the factor4 g and h being Square snummabte functions

with the same kind o6 Fouier seies as f in (1.2)?
V

Helson and Lowdenslager [2] gave a complete positive answer for some

* . reci'ns R, called half-pfanes, which have the following property:

- (m,n) c R if and only if (-m,-n) / R, unless m=n=O.

The following interesting regions are typical half-planes:

S = {(m,n): m < -1, n E Z} U {(O,n): n < -11 (1.3)

T = {(m,n): m E Z, n < -1} U {(m,O): m < -1}, (1.4)

but another interesting region, namely the third quadrant
0J

Q = I(m,n): m < 0, n < 0} - {(0,0)} (1.5)

II

is not a half-plane. Thus they pose the question whether this factorization

D11 /or
Dist Spec al• NIp.f
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holds for the third quadrant.

However, now we know that it is not possible to factor all the summable :1
functions f with Fourier series of the form

f ao0 + amn e-i(me + nc) (1.6)

(m,n)cQ

into the product of two square summable functions g and h with Fourier series

as in (1.6). (See Rudin [7, page 67].) Thus one has to look for sufficient

conditions that must be imposed on f in order to get such a factorization.

After setting up the necessary notation and terminologies in Section 2,

we qive a set of such sufficient conditions in Section 3. In sections 4 and

5 we obtain similar extensions of two further well-known results in the

function theory on the unit disc, a theorem due to Szeg6 and a theorem of Riesz,

to function theory on the torus. Again, the difference between our extensions

here and the earlier extensions of the same facts by Helson and Lowdenslager [2]

and Bochner [1] is in the set of lattice points which plays the role of negative

integers.

In order to prove our results we use techniques used by Helson and

Lowdenslager in [2] together with some results concerning stationary fields.

We finally mention that, just as the well-known strong connection between

the function theory on the unit disc and the prediction theory of stationary

random fields, there is some strong tie between the function theory on

the torus and the prediction theory of stationary random fields. For more on

this one can see Helson and Lowdenslager [2,3], Korezlioglu and Loubaton [5],

and Soltani [8].

. -• • • ,- • . o,'. ,.. . o o o .. ° • • " ..... "..... .... 'o . w -. w.. ,
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2. PRELIMINARIES. Let Xmn be an element of a Hilbert space H for all

m integers m and n. Xmn is called a stationary fietd on Z2 if for all integers

m,n,r,s the inner product of Xmn and Xrs depends onty on m-r and n-s, i.e.,

if we have

(Xmn, Xrs) = p(m-r, n-s).

In this case p(m,n) = (Xmn, X00 ) is a positive definite function on the group

of lattice points Z2. Thus there exists a nonnegative measure 1j, called the

spectraf measure of the field Xmn, defined on the Borel sets of the torus

0 < 0 < 27, 0 < o < 2r

such that

p ,(m,n) = J e-i(m + not)dv ' for all m,n E Z. (2.1)

If p is a.c. with respect to the normalized Lebesgue measure do = dod its

4T2

Radon-Nikodym derivative n is called the spectat density of the field.

L denotes the Hilbert space of all functions on the torus which are

square summable with respect to the measure 1j. From (2.1) it is clear that

the operator

Xmn e (me + not)

extends to an izomorphm from

HX = the closed subspace of H spanned by all X 's,
mn

onto L2. This isomorphism is called the Kotmogrov isomo'tphim between the

. . . . . . . .
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time domain and spectral domain.

For any subset M of Z2 we define H (M) (respectively H (M)) as the closed

subspace spanned by all X mn' (respectively ei-m +n nE 2 n h

2
Hilbert space H (respectively L ).

HX , HX, and Hmn stand for Hx(M) where M is the set {(r,s): r<m, scZ},x, x' x
{(r,s): r E Z, s< n} and {(r,s): r < m,s _< n) respectively. Hm, Hon and

_ 2 Hm  con

Hmn can be defined similarly. For a spectral density w, by Lw  H w H w and

Hmn we will denote the corresponding spaces where p is replaced by wdo.w
Finally Pm, pn, and pm stand for the orthogonal projections onto H,

nnd m respectively.
x  and HX z2

2.1. Definition. A stationary field Xn, (m,n) E Z 6 said to have a
quaitet-pkane moving averag t)&eprsentation i there i's a white noise Vmn

a nd constants bmn wvth E(m,n)EZ2  lb mn2 < - such that

Xmn b0o0+ bpq Vm+Pn+q (2.2)

(p,q)EQ

Hmn Hmn 2Hxn Hmn fo a/ (m,n) Z-

We need the following theorem proved by Soltani [8, Theorem 4.3].

2.2. Theorem. Let Xmn be a stationa rq Aietd with specVrat measure p. Then

Xmn has a quatte-pfane moving aveAage teptesentation if and ony i6 it ha' a

5xectfit density w satisfying the following conditions

(i) loq w E L,

(ii) Fonrtie coe. AicientS oA loa w vanishe outside QU (-Q) u{(0,0)1

(iii) HO0  H HH -0
w w w
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We also need the following definition.

2.3 Definition.

(a) We say that the stationaity random fined Xmn has the commutative

property if

pm- p cofn pmn

(b) A nonnegative measure v' is said to have the commutative property i6

its corresponding stationary fied has the commutative property.

The followina theorem shows the connection of this commutative property

with conditions (i), (ii), and (iii) of Theorem 2.2.

2.4 Theorem. The absolutety continuous nonnegative measure vi whose density w

has the property f log wd a > -- has the commutative property iA and oiu

iA it satisfies conditions (ii) and (iii) of theorem 2.2.

Proof. The proof follows from Theorem 2.2 above and proposition 2.1.6 in

Korezlioalu and Loubaton [5].

I

. .--
~. -
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3. FACTORIZATION THEOREM. In this section we will prove one of the main

results of this article, namely a factorization theorem concerninq factoring

H1 functions as a product of two H2 functions. (Theorem 3.1.

A summable nonnegative function w on the torus will be called faetotabte

with respect to the half-plane S, defined by (1.3), if there exists a function

T of the form

=o)c i(m + n) (3.1)

such that

w(Nc) = I a(O,Q )I (3.2)

such a factor , is called optimat if

JCo0 J' = exp (f log wda) (3.3)

and the optimal factor is unique up to multiplication by a constant of modul 1,

[3]. Helson and Lowdenslager [2] have proven that a nonnegative summable

function w has such an optimal factor with respect to S if and only if log w E .

In fact, to construct this factor they take the function H to be the proection

of the function 1 on the subspace H w(S) and then show [2] that

e I =l + H12 w,

where A = f log wda thus arriving at the factorization

w X= 2  IfI2 (3.4)

e /2

with = -. It is then shown that the square summable function @ has the

required series representation, namely

% ' ' ' -. 1.; ' ,, ,-- ,' ,, .. - ii. . i -___•__-_____
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e x2 H cO + n c e- i(me + na) (3.5)1 + H 00 mAnES mn

Now we can state and prove our theorem concerning the factorability of 
H1

functions as the product of two H2 functions.

3.1 Theorem. Let f be a summable function on the torus whose Fourie seiez

C' of6 the formn

f -ao0 + I(m,n) Q amn ei(m + na) (3.6)

wherke Q 1, the third quadtant defined by (1.5). Suppose that

(i) log Ifi e L

(ii) Fourie,-L coefficients of log IfI vani6h outside QU (-Q) u f(0,0)},

(iii) H f 0 H .0 =  H f ,

Then the'e exists 6quare summabte functions g and h, with the same Fourier

seAue as for f in (3.6), such that

f = gh

Proof: Taking w = Ifi then w is a nonnegative function with log w e L (by (i))

hence by what was proven above, w has the optimal factorization

IfI = w e x/2  2 (3.7)

Now workina with the half-plane T of (1.4), instead of the half-plane S of

(1.3), one can similarly factor w with respect to T as
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If W l 1' (3.8)
1 + K

where K is the projection of 1 on H w(T). On the other hand, by Theorem 2.2,

the stationary field X mn corresponding to the density function w has a

quarter-plane moving average representation, namely there exists a white

noise Vmn and constants bmn with Elbmnl 2 < - such that

Xmn = b00v00 + E(pq)cQ bpqVm+p n+q

Hmn Hmn for all m,n.
X

Thus we see that Hx(S) = HV(S) and Hx(T) = HV(T). Using this fact one can see

that the projection of XO0 on H s(S) and H x(T) are both the same and that is

the projection of XO0 on Hx(Q). In fact, these Drojections are simply

(p,q)EQ pq pq

Thus their Kolmogrov isomorphs are the same and belonqs to H w(Q). But their

isomorphs are just H and K.Hence we have

H = K E H w(Q). (3.9)

This means that there exists a sequence Pn of polynomials of the form (3.6)

such that

P -H in L2

n w

or

1 + P 1 1 + H in L2

n w
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which implies that

1 + P 1 + H in L1
n w

which means

(1 + Pn)W - (1 + H)w in Ln do

hence

(1 + P n)f - (1 + H)f in L1
do

This implies that (1 + H)f, and hence

h 1/ 2 ( + H)f

has the required Fourie series given in (3.5). Thus taking the factor a to be

e /2
-1(3.10)

we have the factorization

f qh.

We know that at least h has the required series representation. Now the

function a given by (3.10) has Fourier series of the form (3.5) and similarly

we have

e_/ 2_ b + -i(me + na)
I + K b00

+  bmn e
(m,n)ET

Now since H = K, and hence

e>/2 eX/2

1 + H 1 + K =g,

the function g has Fourier series of the desired form
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above with those lattice points in the left half-plane whose second coordinate

is 2 instead of 1. This will ensure us that all the corresponding Fourier

coefficients vanish. Thus we can conclude that the coefficients of T in

the left half plane are all zero. A similar argument shows tnat the Fourier

coefficients of jis must vanish in the lower half plane as well. Thus the

Fourier coefficients of p are zero in a sector with opening of 37and hence the

Bochner theorem implies the desired result.

5.5 Remark. Another important problem in the Fourier series on the unite

disc is the well-known theorem of Beuring concerning the invariant subspaces

generated by outer functions. This theorem has again been generalized to the

Fourier series on torus by Helson and Lowdenslager [2]. In their generaliza-

tion, as in the rest of that paper, the role of negative integers in played by

the lattice points in the half-plane. Latter Soltani [8] gave another

generalization, where the role of the negative integers is played by the lattice

points of the third quadrant, as considered in the present article.

• . ". • ,
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But since U was an arbitrary polynomial of the form (5.5), the relation (5.10)

completes the proof. 1]

Now we can prove the following Riesz-Bochner type theorem, where the

semigroup of negative integers of Z is now replaced by the semigroup of lattice

points of the third quadrant Q of Z2

5.4 Theorem. Let T be an open sectot of the plane containing the third

quadia it Q. I' the Fou'ier cocfficients o6 the complex measure 1j, whose totale

vaatiii has the. commutative property vanishes on T, then is5 ab'solutely

C ' " t ltett5.

Proof. We can assume that this sector T is centered at the origin, since

otherwise it will contain such a sector. Now since Q is contained in T, using

00
Lemma 5.3 for Q Q, we conclude that vis has no nonzero coefficient on q, and by

Lemma 5.1 even at the origin. On the other hand there exists a lattice point
mo+l 1

with second coordinate 1 in T. Calling this point (mol), then Q clearly
mo+l 1

is contained in T. Thus applying Lemma 5.3, this time to 0 , we conclude
m +1 1

that the Fourier coefficients of Ps on Q is zero. Hence by corollary

5.2 its Fourier coefficient is zero at (mo+l 1) as well. Now one can see that
m0+2 1

if m0+2 < 0 the Fourier coefficients of ps vanishes on Q In fact we

have
m +2 1 m0+l 1Q c0 u QU {(m 0 +lI,)}

and we have already shown that the Fourier coefficients of v s vanishes on
m +1 1
Q , q, and at (m0+l,l). Now using corollary 5.2 again we see that the

Fourier coefficient of js vanishes at (m0+2,j). If we continue with this

fashion we see that the coefficients of ps on all lattice points of the form

(m,l) with m < 0 are zero. Now we can start an argument similar to that

" . . . ' - - .--:i.-.. . : -- .-- - - -- -- -.-- - - - - -- )-- - .- , , -s. --.
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1 22

(1 + H)-  belongs to L

(1 + H)-  b + b e-i(mO + nc) , b O
mn

(m,n)cQ

(1 + H)w belongs to L (5.9)

where w is the density of v. Now since clearly

f(6,t)j < w(O,i) a.e. da,

(5.9) implies that (1 + H)f belongs to L 2 as well.

Now choose a sequence N of trigonometric polynomials of the form (4.4) such

n

that

l + N -b-l(1+H) - ,in L2

By (5.8), for each n, we have

U (1 + Nn) (1 +H )di a = 0.

Now taking limit and letting the limit go inside the inteoration sign we

get

{ U d a= 0. (5.10)
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We know

M -H, in L2
n V'

or

1 + M - 1+H, in L2.
n

Since U(I + N) is a bounded function we have
U(l + N)(1 + Mn) - U(I + N)(l + H), in L

This implies

U(l + N)(I + Mn) - U(l + N)(l + H), in L (5.6)

Now since v is the total variation measure of V, (5.6) implies

U(l + N)(l + Mn) U(l + N)(I + H); in L1

n p

which implies

U(I + N)(l + H)dp = lim ( U(I + N)(I + Mn) djj

Using our assumption on the coefficients of v we get

J U(l + N)(l + H) dp = 0 (5.7)

On the other hand since fil + H12 dvs = 0 we see that I + H vanishes almost

everywhere with respect to vs and hence with respect to ps. Thus (5.7)

reduces to

J U(I + N)(I + H) a = 0 (5.8)

or

f U(0 + N)( + Ofdo = 0,

where f is the density of 1. Now we need the following facts which have

Alreadv been shown:

-. ' . ' " ' "". .- '',. " . '- .. ' .-' - ' . . . . '- . .. .. . - "- ,"

.- , " "'L - " .• " .' .' ' ._ " , L _ ' ' , 
- -

- • • " " _ ,r _



then its FouieA coe6ffcient at (r,s) vanishe too.

Proof. Let H and Mn be as in the proof of Lemma 5.1, then (5.2) can be written

as

w imp i + sc) + M e i(re + sca) dv5  . (5.4) 1

ei(re + sa) + M n(re +

But now our assumption implies that

J Mn ei(rO + sct) dtis = O.

for all n, thus we get

e i(re + set) dos  0"

which completes the proof.

We also need the following lemma.

5.3. Lemma. Le-t w be a complex measuwe on the toqrus whose total variation v

ha5 the commutative property. If the FoutieA coeffiecents of 1 vanis6h on Qrs,

the the coe6icent of ifts snqu&v and absolutely continuous patt vani.shes

theAe -sepakate y.

Proof. Let H and M be as in the proof of Lemma 5.1. Let N be a trigonometric
n

polynomial of the form (4.4) and U be a trigonometric polynomial of the form

U e- "'. a . e. i(m + . a) (5.5)
((m,n)rQ m e)
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the form (4.4) such that

nn~Mn H, nL2

Hence

Mn +H, in L2

n s

which implies

1 + M l+H in L2
n v s

n s

which together with (5.1) implies

+ mI n n 12 d\)s  0 .

Now one can see that this implies

i + Mn, dvs  0, (5.2)

and hence

S(1 + Mn) d s  0.

But by our assumption f Mndvs = 0. Hence

IdIjs = 0

and this completes the proof. Fl

5.2 Corollary. Let ji be a comptex mea6ure whose totat vaa~ton measue v has the

commutative propetty. IA the FourieA coefficients o6 vs? the singulaA. pawt

o6 p vanishe6 on

Qrs {(m,n): m < r, n < s} -{(r,s)} (5.3)

.°. . . . . .. . . .° . -. - . - - .- o. . * _ . °° . *. . .

-. . -.- .*. ., •1 - .. -. m .-. V . . ° . . . . . ° ' ° ° .. - . - .. ' . - 1 . - -
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5. RIESZS TYPE THEOREM. Continuing along the path of the last two sections,
in this section we will give an extension of the following result due to

F. and M. Riesz [6] to the measures on the torus: 16 p is a bounded compeex

measure on the unit ciPcfe whose FoutieA coeff cients vanish fot negative

integers, then p is absolutety continuous with respect to the Lebesgue

measure. Bochner [1] proved the following extension of this result for

measures on the torus: Suppose the complex meaure p on the torus has vanishing

Fourier coefficients on a sector o6 plane with opening angle grate than r,

then v is absoutety continuous with respect to the Lebesgue meaUre on the

to'us,. Here, passing from the measures on the circle to measures on the torus,

Bochner is replacing the set of negative integers by a half-plane, but we are

interested in replacing it by the third quadrant. We will use the prediction

theoretical technique of Helson and Lowdenslager [2] of their new proof of the

same theorem.

We start with the following lemma.

5.1 Lemma. Let i be a comptex meaure whose totat vatiation meaure has the

commutative property. 1f the Fourier coefficients o6 ps , the singutoA part o6

i vanihes on Q, then its coefficient at (0,0) vanishes too.

Proof. Let v denote the total variation of D. By theorem 4.2 and its proof

the projection H of 1 on H (Q) satisfies

11 I + HI2  dvs  = 0. (5.1)

since H is in H there exists a sequence M of trigonometric polynomials ofn i
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4.3 Corollary. 16 W i6 a nonneola.tie .6wnmabte 4utnction 6a (ti

(ii), and (iii) 01A Theo'em 3.1. then we have

Inf 11 + MI' wda exp (log d)

-. ~whe~e M 'Langeu oveA' aUt tAt gonomet'uic potynomi.a& 06 the Am'm (4.4).
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1 +M 1 +H inL2

n
-- which implies

"" I I dI i IlI 1d

but this together with the fact that

11 + Hjd exp (f log wdo)J

proven by Heldon and Lowdenslager [2], shows that

fl + Mn1 2 dv exp ( log wda) (4.6)

Now (4.5) and (4.6) imply the desired relation (4.3). Thus we just have to

prove the above claim. To do this we first note that j and hence its

corresponding stationary field Xmn has the commutative property, and then we
oon

notice that since Xm n-k E H n, for all k > 0 we have PonXmnk = X andM- = m- cXm = m-l nrn-k

p Xm n-k P P Xn-mn =k P Xmn-k' for all k >0 . Thus we get

P x)o =Xo 0 0 + (XIH0 1  H- ) =
PH x(S)0o =P X 0 0OJ x

P-l Ox + PO -1 p1-

Since each term in the right hand side belongs to Hx(Q), the term on the left

belongs to Hx(Q) which means that its isomorph H must belong to H w(Q). This

completes the proof of the claim and hence the theorem. U

This together with Theorem 2.4 will qet the following corollary.

L<::

6 - - -..i - . ..'. .- -:-..-, .-- . -- . : . -. - -: - -.- .- .. - -'". .- • . -' - .- - .
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*When the prediction of stationary fields with respect to a quarter-plane,

. say the third quadrant is considered, we need an extension of Szdgo's

theorem for the third quadrant. In this section we give such an extension,

however we need to assume that our measure pi has the commutative property.

These kinds of conditions arise frequently whenever one is trying to extend

*a fact concerning the functions of one complex variable to functions of two complex

variables, with the set of nonnegative integers being now replaced by the third

quadrant (cf. Kallianpur and Mandrekar [4], Korezlioglu and Loubaton [5], and

Soltani [8].)

4.2 Theorem. Let p be a measure having the commutative property. Let D and

w be ai in Theorem 4.1. Then

Inf 11H + MJ2 dp : exp ( ( log wdo) (4.3)
M f

Ane~e M ranges over the trigonometic polynomiaL6 o6 the fom

*.. M = Z amn ei(mO + na) (4.4)

(m,n)EQ

Proof. We first note that since the class of polynomials M in (4.4) is smaller

than the class of polynomials P in (4.2),we have

Inf I1 + MI2 dv > exp( I log wdo). (4.5)
M

Then we claim that the function H namely the projection of I on H (S) belongs

to H (Q). Hence there exists polynomials M of the form (4.4) such thatw n

Mn - H in L2

or equivalently

7 . - . . . . .
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4. SZEGO'S THEOREM. In this section we will give an extension of the

following theorem of Szeg6 [9] which plays a key role in the prediction theory

of stationary stochastic processes:

16 J is a finite nonnegative mea-u"te defined on the Bou't

set oA the circle 0 < 0 < 21T, whose absolutely continuous part is

w(ei )dO/2r then we have

exp ( f log w do) = Inf 11I + P12 dIv,
P

whete P ranges over the t'igonometric polynomiatz o6 the form

ie 2i ieP ae +ae +...+ane1 2 n

The solution of the prediction problem for any region R of lattice points

of Z2 requires an appropriate generalization of Szdgo's theorem for that

region.

Helson and Lowdenslager [2] found the following generalization of Sz~go's

theorem for the half-planes R which is important in the prediction of stationary

fields with respect to the half-planes.

4.1 Theorem. Let v be a finite nonnegative measuAe on the torus whose

absolutely continuou pott iz w(ei , ei') ded/47 . Then

Inf J 11 + PI2dV = inf 11 + P12 wdoa exp(f log wda), (4.1)

wheAe P ranges over the trigonometic polynomiaJl6 o6 the fom

-a ei(mO + na) (4.2)P = Z amne.

q (m,n)ER

I i:: iIb LI. .. : ..:-- : -:" " ..:. ; ..::b: : .:..b:i:,:. .i: :. ' '.::::": ". . ..:.:: . : ' .'::
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Pof trigonometric polynomials of the form (3.8) and a sequence of numbers

an such that

-l 2
a n +Pn gin L If

Hence

f an + Pn-g~ Ifldo 0

* which means

JI(a n + P n)g _ 112 do -~0.

Thus 1 belonqs to the closed subspace spanned by gei(e+n, m > 0, n > 0.

mn o o
*Thus Theorem 2.18 of Soltani [8] implies that H H x n HX and hence
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the case of functions of one complex variable every outer function is strongly

outer too.

Now we can prove the following theorem.

3.5 Theorem. Let f be a summabte 6unction on the to'uw. Then f has a

factortization

f = gh

such that

(a) g and h ae function with

Ifi = Ig2= Ihl2

(b) h ha Fouier serie/s ai n (3.6), and

(c) g is sttongly outeA

Lf and only i4 f has FourieA s6eries o6 the form (3.6) and (i), (ii), and (iii)

! of Theoem 3.1 hotdz.

Proof. If f is a summable function with Fourier series of the form (3.8)

which satisfies (i), (ii), and (iii), then the proof of Theorem 3.1 shows that

the functions g and h employed there have the properties (a), (b), and (c).

Conversely, suppose that the summable function f can be factored as

f =gh

with g and h satisfying (a), (b), and (c). Then by (a) we have

log Ifi = 2 log Ig!.

From the fact that g, as an outer function, has the properties described for f

in (i) and (ii), the corresponding results (i) and (ii) for f follow immediately.

Now since g is strongly outer then g -l Thus there exists a sequence

44
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g + (me + not)
0d0 d dmne

(m,n)EQ

Finally we note that square summability of the factors follows from the fact

that the factors g and h as given above has the following property

Igl2  :  1hl 2  = Ifl (3.11)

This completes the proof of our theorem.

As a corollary to Theorem 3.l,with special attention to (3.11), one

arrives at the following:

3.2 Corollary. Any ()unction on the unLte spheAe o6 the. Hardy space H1 of the

tous can be facto,-ed as the l'oduct o6 two functions on the unit sphe.,te of the

Hatdy s5pace. H2 o, the. toru'.

To state the next theorem we need to give the following definition.

3.3 Definition. Let h be a (unction i LP (I < p < o) with Fouwtek 5eAties

co the ;fo-'u

-(me + not)h ~a0 + . am e
h 00 + amneim~

(m,n)EQ

then (a) the Auncion h 4,s caUed outeA,' i4

flog Ihlda = log I f fdal : log 1a 0 1 > -o0

(b) we call the Aunct.ioo h to be stAonaeu outeA iA its inveue h Ue.s in

00H withW =hl
w

*3.4 Remark. One can see that strongly outer functions are always outer and in
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